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An exploration of nucleon TMD observables at a substantially lower pion mass, 170MeV, than

used in previous lattice TMD calculations is presented. On a corresponding RBC/UKQCD do-

main wall fermion ensemble, TMDs are extracted from nucleonmatrix elements of a bilocal quark

operator containing a staple-shaped gauge link. Appropriate TMD ratios are constructed to cancel

divergences associated with the gauge link. In particular, results associated with the time-reversal

odd Sivers effect and with the quark transversity are reported. They are compared with previous

domain wall fermion calculations at 297MeV pion mass with a view to exploring whether these

observables vary strongly as a function of pion mass in the chiral regime.
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1. Introduction

In the description of hadron structure, transverse momentum-dependent parton distribution

functions [1] (TMDs) play a role complementary to generalized parton distributions (GPDs).

Whereas GPDs encode information about the transverse spatial distribution of partons (through

Fourier transformation with respect to the momentum transfer), TMDs contain information about

the transverse momentum distribution of partons. Cast in a Lorentz frame in which the hadron

of mass mh propagates with a large momentum in the 3-direction, P
+ ≡ (P0+P3)/

√
2≫ mh, the

quark momentum components scale such that TMDs are principally functions f (x,kT ) of the quark

longitudinal momentum fraction x = k+/P+ and the quark transverse momentum vector kT , with

the dependence on the component k− ≡ (k0− k3)/
√
2≪ mh becoming ignorable in this limit. The

function f (x,kT ) will thus be regarded as having been integrated over k
−.

Experimentally, TMDs manifest themselves in angular asymmetries observed in processes

such as semi-inclusive deep inelastic scattering (SIDIS) and the Drell-Yan (DY) process. Corre-

sponding signatures have emerged at COMPASS, HERMES and JLab [2–4], and that has motivated

targeting a significant part of the physics program at future experiments in this direction, e.g., at

the upgraded JLab 12 GeV facility and at the proposed electron-ion collider (EIC). Relating the

experimental signature to the hadron structure encoded in TMDs requires a suitable factorization

framework, the one having been advanced in [5–8] being particularly well-suited for connecting

phenomenology to lattice QCD. Factorization in the TMD context is considerably more involved

than standard collinear factorization, with the resulting TMDs in general being process-dependent,

via initial and/or final state interactions between the struck quark and the hadron remnant.

2. Definition of TMD observables

The definition of TMD observables amenable to lattice evaluation has been laid out in detail

in [9]. Summarizing briefly, the starting point is the fundamental correlator

Φ̃
[Γ]
unsubtr.(b,P,S, . . .) ≡

1

2
〈P,S| q̄(0) Γ U [0,ηv,ηv+b,b] q(b) |P,S〉 (2.1)

where S denotes the spin of the hadron and Γ stands for an arbitrary γ-matrix structure. The

staple-shaped gauge connection U follows straight-line paths connecting the positions given in

its argument; the unit vector v thus specifies the direction of the staple, whereas η parametrizes

its length. The presence of U introduces divergences in Φ̃
[Γ]
unsubtr. additional to the wave function

renormalizations of the quark operators; these divergences accordingly must ultimately be com-

pensated by additional “soft factors”, which are expected to be multiplicative and do not need to

be specified in detail here, since only appropriate ratios in which they then presumably cancel will

ultimately be considered. In order to regularize rapidity divergences, the staple direction v is taken

slightly off the light cone into the space-like region [5, 6], with perturbative evolution equations

governing the approach to the light cone [7]. A useful parameter characterizing how close v is to

the light cone is the Collins-Soper evolution parameter ζ̂ = v ·P/(|v| |P|), in terms of which the
light cone is approached for ζ̂ → ∞.
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The correlator (2.1) can be decomposed in terms of invariant amplitudes ÃiB. Listing only the

components relevant for the Sivers effect and the transversity discussed in detail below,

1

2P+
Φ̃

[γ+]
unsubtr. = Ã2B+ imhεi jbiS jÃ12B (2.2)

1

2P+
Φ̃

[iσ i+γ5]
unsubtr. = imhεi jb jÃ4B−SiÃ9B− imhΛbiÃ10B+mh[(b ·P)Λ−mh(bT ·ST )]biÃ11B , (2.3)

where Λ denotes the hadron helicity (i.e., S+ = ΛP+/mh, S
− = −Λmh/2P

+). These amplitudes

are useful in that they can be evaluated in any desired Lorentz frame, including a frame that is

particularly suited for the lattice calculation. Specializing to TMDs integrated over momentum

fraction x, by considering specifically b ·P= 0, they serve to define the “generalized Sivers shift”

〈ky〉TU(b2T , . . .) = −mh Ã12B(−b2T , . . .)/Ã2B(−b2T , . . .) = mh f̃
⊥[1](1)
1T (b2T , . . .)/ f̃

[1](0)
1 (b2T , . . .) (2.4)

where the right-hand expression introduces the notation in terms of Fourier-transformed TMD mo-

ments, for details, cf. [9]. In the bT → 0 limit, (2.4) formally represents the average transverse
momentum ky of unpolarized (“U”) quarks orthogonal to the transverse (“T ”) spin of the hadron,

normalized to the corresponding number of valence quarks. Similarly, one can introduce a general-

ized tensor charge via the ratio of Fourier-transformed moments of the transversity and unpolarized

TMDs,

h̃
[1](0)
1 (b2T , . . .)/ f̃

[1](0)
1 (b2T , . . .) = −[Ã9B(−b2T , . . .)−m2hb2Ã11B(−b2T , . . .)/2]/Ã2B(−b2T , . . .) . (2.5)

In the bT → 0 limit, this formally reduces to the tensor charge, normalized to the corresponding
number of valence quarks. The ratios (2.4) and (2.5) are designed to cancel both multiplicative soft

factors associated with the gauge connection U as well as wave function renormalizations attached

to the quark operators in (2.1) at finite physical separation b.

3. Lattice evaluation and results

To access observables such as (2.4) and (2.5) within lattice QCD, one calculates hadron matrix

elements of the type (2.1) and then decomposes them into invariant amplitudes, as given in (2.2)

and (2.3). For this to be possible, it is crucial to work in a scheme where the four-vectors b and

v are generically space-like, for the following reason: By employing a Euclidean time coordinate

to project out hadron ground states via Euclidean time evolution, lattice QCD cannot straightfor-

wardly accomodate operators containing Minkowski time separations. The operator of which one

takes matrix elements thus has to be defined at a single time. Only if both b and v are space-like is

there no obstacle to boosting the problem to a Lorentz frame in which b and v are purely spatial,

and evaluating Φ̃
[Γ]
unsubtr. in that frame. The results extracted for the invariant amplitudes ÃiB are then

immediately valid also in the original frame in which (2.1) was initially defined, thus completing

the determination of quantities of the type (2.4) and (2.5).

Since, in a numerical lattice calculation, the staple extent η necessarily remains finite, two

extrapolations must be performed from the generated data, namely, the one to infinite staple length,

η → ∞, and the extrapolation of the staple direction towards the light cone, ζ̂ → ∞. Whereas the

former extrapolation is under control for a range of parameters used in this work, the latter presents

3
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Figure 1: Dependence of the generalized Sivers shift on the staple extent at a fixed bT and ζ̂ , in domain

wall fermion calculations at mπ = 170MeV (left) and mπ = 297MeV (right) [11]. Note that the two panels

available for this comparison match fairly well in bT , but differ somewhat in ζ̂ ; however, as evidenced by

Fig. 3 (right) below, the generalized Sivers shift at mπ = 297MeV does not vary significantly in the ζ̂ range

in question.
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Figure 2: Generalized Sivers shift as a function of bT in the η → ∞ SIDIS limit, at a fixed ζ̂ , in domain wall

fermion calculations at mπ = 170MeV (left) and mπ = 297MeV (right) [11].

a challenge, owing to the limited set of hadron momenta P accessible with sufficient statistical accu-

racy. This issue has been investigated in detail in [10]. The present study focuses instead on another

aspect, namely, whether TMD ratios of the type (2.4) and (2.5) display significant variation with

the pion mass in the chiral regime. Figs. 1-6 present new data for the isovector1 generalized Sivers

shift (2.4) and generalized tensor charge (2.5) in the nucleon, obtained using an RBC/UKQCD

2+1-flavor domain wall fermion ensemble with a lattice spacing of a= 0.144fm, corresponding to

a pion mass of mπ = 170MeV. They are juxtaposed in Figs. 1-6 with corresponding data previ-

ously obtained [11] using an RBC/UKQCD2+1-flavor domain wall fermion ensemble with a lattice

spacing of a= 0.084fm, corresponding to a pion mass of mπ = 297MeV. The mπ = 170MeV cal-

culation employed 8 source-sink pairs on each of 310 lattices, i.e., 2480 samples, for each matrix

element; the mπ = 297MeV calculation 8 source-sink pairs on 533 lattices, i.e., 4264 samples.

Fig. 1 displays the dependence of the generalized Sivers shift (2.4) on the staple extent for a

given quark separation bT and a given staple direction characterized by ζ̂ . The T-odd behavior of

1In the isovector, u− d quark combination, diagrams with operator insertions in disconnected quark loops, which
have not been evaluated, cancel.
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Figure 3: Generalized Sivers shift as a function of ζ̂ in the η → ∞ SIDIS limit, at a fixed bT , in domain wall

fermion calculations at mπ = 170MeV (left) and mπ = 297MeV (right) [11].
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Figure 4: Dependence of the generalized tensor charge on the staple extent at a fixed bT and ζ̂ , in domain

wall fermion calculations at mπ = 170MeV (left) andmπ = 297MeV (right) [11]. Note that, as in Fig. 1, the

juxtaposition employs somewhat differing ζ̂ values; however, the variation of the generalized tensor charge

with ζ̂ in the range in question is not significant, cf. Fig. 6.

this observable is evident, with η → ∞ corresponding to the SIDIS limit, and η →−∞ yielding the

DY limit. The data level off to approach identifiable plateaux as the staple length grows, with the

lighter pion mass data being affected by considerably stronger statistical fluctuations. The limiting

SIDIS and DY values, represented by the open symbols, are extracted by imposing antisymmetry in

η , allowing one to appropriately average the η →±∞ plateau values. Fig. 2 summarizes the results

in the SIDIS limit for different bT at a given ζ̂ , where the shaded area below |bT | = 2a indicates
the region where the results may be significantly affected by finite lattice cutoff effects. The strong

statistical fluctuations in the mπ = 170MeV ensemble manifest themselves in what appears to be

an outlier at |bT | = 0.29fm; only a tenuous signal is obtained for the generalized Sivers shift in

the region |bT | > 2a. Fig. 3 in turn summarizes the dependence of the generalized Sivers shift on
the Collins-Soper evolution parameter ζ̂ , with |bT | kept fixed. The same outlier as seen in Fig. 2
(left) is again present, at ζ̂ = 0.27. Only a very limited range of ζ̂ was accessible, corresponding

to the limited set of nucleon momenta P available; no clear large ζ̂ trend can be identified from

the data obtained within the present study. Note, however, that a dedicated calculation can indeed

provide information about the large ζ̂ limit in favorable circumstances [10]. Figs. 2 and 3 suggest
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Figure 5: Generalized tensor charge as a function of bT in the η → ∞ SIDIS limit, at a fixed ζ̂ , in domain

wall fermion calculations at mπ = 170MeV (left) and mπ = 297MeV (right) [11].
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Figure 6: Generalized tensor charge as a function of ζ̂ in the η → ∞ SIDIS limit, at a fixed bT , in domain

wall fermion calculations at mπ = 170MeV (left) and mπ = 297MeV (right) [11].

that, within the large uncertainties affecting the mπ = 170MeV calculation, the data at the two pion

masses are compatible. However, more accurate calculations at low pion masses will be necessary

to draw substantive conclusions about the mπ-dependence of the generalized Sivers shift.

A somewhat more stable picture regarding statistical fluctuations is afforded by the generalized

tensor charge (2.5). Fig. 4 shows its dependence on the staple extent for a given quark separation

bT and a given staple direction characterized by ζ̂ . This is a T-even quantity, with the SIDIS

and DY limits coinciding; the asymptotic values represented by the open symbols are obtained by

averaging both limits. Fig. 5 summarizes the SIDIS limit data for given ζ̂ as a function of bT ,

similar to Fig. 2. A somewhat more stable numerical behavior is observed; again, no significant

difference between the results at mπ = 170MeV and mπ = 297MeV is seen, keeping in mind the

sizeable uncertainties of the data at the lighter pion mass. Fig. 6, which conversely displays the

dependence of the generalized tensor charge on the Collins-Soper evolution parameter ζ̂ , with |bT |
kept fixed, likewise exhibits no significant variation of that observable with mπ .

4. Summary

Within a continuing exploration of TMD calculations using lattice QCD, the principal focus

of the present work is whether TMD ratios of the type (2.4) and (2.5) display significant variation
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with the pion mass in the chiral regime. To this end, new data for these observables obtained at

the pion mass mπ = 170MeV were compared with data previously extracted [11] from calcula-

tions at mπ = 297MeV. The results of the calculation at mπ = 170MeV display strong statistical

fluctuations. For the generalized Sivers shift (2.4), only tenuous signals, with prominent outliers,

were obtained once the transverse quark separation |bT | became appreciable. The generalized ten-
sor charge (2.5) proved to be somewhat more numerically stable, but is still subject to substantial

statistical uncertainties. Keeping in mind these large statistical fluctuations, the juxtaposition of

the mπ = 170MeV and mπ = 297MeV data suggests that the TMD ratios (2.4) and (2.5) are fairly

stable as a function of pion mass in the chiral regime; no statistically significant variation is seen,

within the large uncertainties. However, it is clearly necessary to obtain more accurate, higher

statistics data at light pion masses to draw any substantive conclusions about the mπ -dependence

of TMD ratios as the physical pion mass is approached.
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